Invention Disclosure

1. Invention Title. Coding and transport of 3D depth data for closed captions

2. Invention Summary.

The invention provides an efficient way to encode depth data (Z-axis) information to enable closed caption authoring for stereoscopic 3D content based on the CEA-608 caption standard.

3. Invention Description.

a. Describe the invention in detail and/or attach a description, drawing(s) and/or diagram(s), if available. Please include flow charts for descriptions of software processes, and block diagrams for descriptions of hardware systems. Include the description/attachments in electronic form if possible.
The invention provides a way that can be used with closed caption signals to convey a unique depth value when closed captions are used with stereoscopic programming and rendered on a 3D display. The invention makes use of previously unused code-pairs within the CEA-608E standard to convey the depth information. This method to convey the depth information can work equally well with all the various types of closed captions provided by the CEA-608 standard including Roll-up captions, Pop-on captions, and Paint-on captions styles. This method is flexible enough to enable each independent caption window to have independent control of depth. The method permits each caption window to be displayed in a wide range from negative parallax (audience space) to positive parallax (behind the screen).

The present CEA-608E caption standard defines nineteen unique "Miscellaneous Control Codes" using a unique two-byte pair for each data channel. (See table 52). These control codes provide miscellaneous display instructions or formatting commands to the caption decoder such as backspace, delete to end of row, Flash on, Carriage return, Tab offset, etc. The invention describes a method to expand the use of the two-byte control codes to instruct a 3D capable caption decoder to adjust the parallax by a range of pixel values that for the purpose of illustration go from -40 to +40 pixels. This parallax value is used by the 3D caption decoder (for example the one described by Invention Disclosure \#60230) to determine the Left and Right image offset values.

The advantage of this system and method over the previous disclosure, is that it enables the author of the captions to determine the exact depth placement for each caption window with certainty, rather than an approach where the decoder alone determines the appropriate placement. This invention allows for some captions to be placed in front of the screen plane (Zero Parallax Position or ZPS) while separate caption elements are placed behind the screen plane or ZPS.

The method described requires very little data overhead and only requires 2 bytes of additional information for each caption element. A preferred method of implementation is
to use the extension of the Miscellaneous Control Code table as shown below to describe the new Z-Axis (parallax) data:

Miscellaneous Control Codes

DataChannel 1		Data Channel 2		Mnemonic	Description
14	20	1 C	20	RCL	Resume caption loading
14	21	1 C	21	BS	Backspace
14	22	1 C	22	AOF	Reserved (formerly Alarm off)
14	23	1 C	23	Aon	Reserved (formerly Alarm on)
14	24	1 C	24	DER	Delete to End of Row
14	25	1 C	25	RU2	Roll-up Captions-2 Rows
14	26	1 C	26	RU3	Roll-up Captions-3 Rows
14	27	1 C	27	RU4	Roll-up Captions-4 Rows
14	28	1 C	28	FON	Flash On
14	29	1 C	29	RDC	Resume Direct Captioning
14	2A	1 C	2A	TR	Text Restart
14	2B	1 C	2B	RTD	Resume Text Display
14	2C	1 C	2 C	EDM	Erase Displayed Memory
14	2D	1 C	2D	CR	Carriage Return
14	2E	1 C	2E	ENM	Erase Non-displayed memory
14	2F	1 C	2F	EOC	End of Caption (flip memories)
17	21	1 F	21	TO1	Tab Offset 1 Column
17	22	1 F	22	TO2	Tab Offset 2 Columns
17	23	1F	23	TO3	Tab Offset 3 Columns
14	57	1 C	57	-40	Pixels (negative) parallax
14	56	1 C	56	-39	Pixels (negative) parallax
14	55	1 C	55	-38	Pixels (negative) parallax
14	54	1 C	54	-37	Pixels (negative) parallax
14	53	1 C	53	-36	Pixels (negative) parallax
14	52	1 C	52	-35	Pixels (negative) parallax
14	51	1 C	51	-34	Pixels (negative) parallax
14	50	1 C	50	-33	Pixels (negative) parallax
14	4F	1 C	4F	-32	Pixels (negative) parallax
14	4E	1 C	4E	-31	Pixels (negative) parallax
14	4D	1 C	4D	-30	Pixels (negative) parallax
14	4 C	1 C	4C	-29	Pixels (negative) parallax
14	4B	1 C	4B	-28	Pixels (negative) parallax
14	4A	1 C	4A	-27	Pixels (negative) parallax
14	49	1 C	49	-26	Pixels (negative) parallax
14	48	1 C	48	-25	Pixels (negative) parallax
14	47	1 C	47	-24	Pixels (negative) parallax
14	46	1 C	46	-23	Pixels (negative) parallax
14	45	1 C	45	-22	Pixels (negative) parallax
14	44	1 C	44	-21	Pixels (negative) parallax
14	43	1 C	43	-20	Pixels (negative) parallax
14	42	1 C	42	-19	Pixels (negative) parallax
14	41	1 C	41	-18	Pixels (negative) parallax
14	40	1 C	40	-17	Pixels (negative) parallax
14	3F	1 C	3 F	-16	Pixels (negative) parallax

14	3E	1 C	3E	-15
14	3D	1 C	3D	-14
14	3C	1 C	3C	-13
14	3B	1 C	3B	-12
14	3A	1 C	3A	-11
14	39	1 C	39	-10
14	38	1 C	38	-9
14	37	1 C	37	-8
14	36	1 C	36	-7
14	35	1 C	35	-6
14	34	1 C	34	-5
14	33	1 C	33	-4
14	32	1 C	32	-3
14	31	1 C	31	-2
14	30	1 C	30	-1
17	30	1 F	30	1
17	31	1F	31	2
17	32	1F	32	3
17	33	1F	33	4
17	34	1F	34	5
17	35	1F	35	6
17	36	1F	36	7
17	37	1F	37	8
17	38	1F	38	9
17	39	1F	39	10
17	3A	1F	3A	11
17	3B	1F	3B	12
17	3C	1F	3C	13
17	3D	1F	3D	14
17	3E	1F	3E	15
17	3F	1F	3F	16
17	40	1F	40	17
17	41	1F	41	18
17	42	1F	42	19
17	43	1F	43	20
17	44	1F	44	21
17	45	1F	45	22
17	46	1F	46	23
17	47	1F	47	24
17	48	1F	48	25
17	49	1F	49	26
17	4A	1F	4A	27
17	4B	1F	4B	28
17	4C	1F	4C	29
17	4D	1F	4D	30
17	4E	1F	4E	31
17	4F	1F	4F	32
17	50	1F	50	33
17	51	1F	51	34
17	52	1F	52	35

Pixels (negative) parallax Pixel (negative) parallax Pixel (positive) parallax Pixels (positive) parallax
Pixels (positive) parallax
Pixels (positive) parallax

17	53	1F	53	36	Pixels (positive) parallax
17	54	$1 F$	54	37	Pixels (positive) parallax
17	55	$1 F$	55	38	Pixels (positive) parallax
17	56	1F	56	39	Pixels (positive) parallax
17	57	1F	57	40	Pixels (positive) parallax

b. Why was the invention developed? What problem(s) does the invention solve? How is it better?
The method provides an efficient method to encode a depth parameter for caption signals that is compatible with the present system and authoring equipment.
c. Briefly outline the potential commercial value and customers of the invention.

FCC rules will require and expect that 3D programming is captioned. While the previous invention provides a suitable mechanism to accomplish this while avoiding depth conflicts, the present invention provides greater control and freedom over the placement of these captions in the depth space.
4. HOW is your invention different from existing products, processes, systems?

Please list the closest publication(s), product(s), method(s), patent(s), etc. to your invention. For each item, how is your invention different?
The previous disclosure did not provide a specific means to convey the caption author's intent or creative choice for the depth placement. This invention adds that missing functionality.

